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Cancer vaccines based on synthetic peptides are a safe, well-

tolerated immunotherapy able to specifically stimulate tumor-

reactive T cells. However, their clinical efficacy does not

approach that achieved with other immunotherapies such as

immune checkpoint blockade. Nevertheless, major advances

have been made in selecting tumor antigens to target,

identifying epitopes binding to classical and non-classical HLA

molecules, and incorporating these into optimal sized peptides

for formulation into a vaccine. Limited potency of currently used

adjuvants and the immunosuppressive tumor

microenvironment are now understood to be major

impediments to vaccine efficacy that need to be overcome.

Rationally designed combination therapies are now being

tested and should ultimately enable peptide vaccination to be

added to immuno-oncology treatment options.
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Introduction
Therapeutic cancer vaccines based on peptides have

been envisaged and developed for almost 40 years and

yet the approach remains in a status of ‘potential’ interest

for cancer therapy rather than one with unequivocal

clinical benefit. Notwithstanding this stark appraisal of

the current situation and the absence of FDA-approval for

peptide cancer vaccines, there have been major advances

in the field. Peptide vaccines are able to elicit an immune

response against a tumor [1,2], and hundreds of clinical

trials [3�] are providing a wealth of information that is

driving the field forward. A realistic roadmap for clinical
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development will take into account the lessons learned

from suboptimal vaccination protocols, the resistance of

tumor cells and the hostility of the tumor microenviron-

ment, and the opportunities of combinations with other

forms of immunotherapy such as immune checkpoint

blockade (ICB).

Cancer vaccines targeting defined antigens aim to induce

or expand cancer-specific T cells and rely on DNA, RNA,

proteins or peptides. The latter offer the most direct way

of targeting a specific epitope, the portion of the antigen

that is recognized by the T-cell receptor in association

with human leukocyte antigen (HLA) molecules, thus

stimulating T cells with defined tumor specificity. This

precision targeting contrasts with the broad immunity

(including autoimmune responses) induced by immune

checkpoint blocking antibodies and contributes to the

excellent safety and tolerability profile of peptide vac-

cines. Moreover, synthesis of clinical grade peptides of

virtually any specificity is achieved more rapidly and cost-

effectively than a human or humanized therapeutic anti-

body. Nevertheless, these advantages are offset by the

fact that a given peptide epitope will efficiently bind to

only one or a few HLA alleles, thus limiting a particular

peptide vaccine formulation to a subset of cancer patients.

In many clinical trials using peptide vaccines in Europe

and the USA, HLA-A2 binding peptides are used and

inclusion criteria require expression of this allele, a con-

dition satisfied by around one third of patients. Choice of

the peptide sequence is the first essential requirement of

a peptide vaccine, but this is not sufficient to elicit an

effective immune response. Peptide length or other mod-

ifications, administration regimen, adjuvants and combi-

nations with other therapies are all key in determining

final clinical efficacy of therapeutic peptide vaccines.

Antigens to target
Many therapeutic vaccines have targeted non-mutated

tumor-associated antigens (TAA), which are shared

between healthy and tumor cells, but are overexpressed

by cancer cells. The advantage of targeting TAA is their

expression by cancers from many individuals. However,

since these TAA are self-proteins, the repertoire of high

avidity T cells with corresponding specificity can be

restricted due to immunological tolerance. Whether this

significantly impacts clinical vaccination has been diffi-

cult to directly assess, because immunomonitoring is

often relatively insensitive and never exhaustive. More

recent advances may address this issue more adequately,

although with the limitations of clinical sampling in the
www.sciencedirect.com
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peripheral blood rather than at the tumor site [4,5].

Results of phase III trials of such TAA vaccines have

been disappointing in the case of pancreatic cancer, non-

small-cell lung cancer and renal cell carcinoma [6–8].

Nevertheless, the approach continues in other indica-

tions, including bladder cancer, prostate cancer, and

glioma [9–11]. Although data are only reported for pilot

studies and phase I/II trials to date, the results are

promising as they show peptide-specific CD8 T cell-

responses in several patients, which was correlated with

longer survival.

Targeting epitopes expressed only in cancer cells and

absent in healthy tissue, the so-called tumor-specific

antigens (TSA), can obviate the limitations of a partially

tolerant T-cell repertoire. These antigens can originate

from viruses associated with certain cancers (e.g. HPV

and HBV) or from mutated proteins, termed neoantigens.

In the former category, several phase I and II clinical trials

targeting HPV are underway or have been completed (as

recently reviewed [12]). Although peptide vaccination

alone may be insufficient for tumor regression, encourag-

ing results from a phase II trial in patients with incurable

HPV-16 related malignances point to the interest of long-

peptide vaccination combined with ICB [13]. However,

human cancers with a known viral etiology are the excep-

tion, and most TSA derive from mutated epitopes. These

neoantigens can arise from point mutations, but other

genetic rearrangements such as insertions and deletions

can also be the underlying cause [14]. Some of these may

be common to multiple tumors, such as the neoepitope

expressed by many glioblastomas, EGFRvIII, as a result

of a truncation in the wild-type EGFR. However, a phase

III clinical trial targeting this epitope with rindopepimut

vaccine in addition to chemotherapy did not improve

survival over chemotherapy alone [15]. This study

assessed humoral responses but did not address the role

of vaccine-induced T cells. Since the best described

mechanism of action of peptide vaccines for cancer is

induction of tumor-specific T cells, it is difficult to judge

whether failure of this trial was a result of an absence of

such a cellular response.

An additional problem of targeting only one epitope, as

performed in the previous study, is the heterogeneous

antigen expression and the outgrowth of antigen-nega-

tive tumor cells. Multi-peptide vaccines are one solution

to this, as long as sufficient tumor antigens are identified.

For TAAs, this was achieved by peptide elution from

tumor cells for the IMA901 vaccine for renal cell carci-

noma [8] and the IMA950 vaccine for glioblastoma using

as adjuvants GM-CSF [16] or poly-ICLC [17], and from

in vitro predictions for other multi-peptide vaccines for

pediatric glioma and multiple myeloma [11,18]. These

studies showed immune responses against multiple pep-

tides in several patients, encouraging further develop-

ment of multiple TAA peptide vaccines. However, the
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magnitude and/or therapeutic efficacy of these responses

still need to be improved, as shown by the IMA901 phase

III clinical trial that showed no improvement in overall

survival [8]. For TSA, there have been major advances in

genome mapping technologies to identify neoepitopes

even in cancers from individual patients [19,20��,21],
thus opening the way to personalized peptide vaccines

[22�], which has yielded particularly encouraging results

in a phase I trial for melanoma, in which up to 20 per-

sonalized long peptides were administered to patients

[20��]. Other studies in glioblastoma are following the

same approach, such as the phase I GAPVAC trial and

the phase I/Ib trial of a personalized neoantigen vaccine;

both showing sustained CD8 and CD4 T cell responses

[23�,24�]. Although multi-peptide vaccines are the most

direct way to broaden anti-tumor immunity and avoid

immune escape, significant tumor cell killing can liber-

ate additional tumor antigens, promote epitope spread-

ing, and expand T cells of different specificities to that

induced by the vaccine or other immunotherapy [25,26].

HLA binding and peptide length
Minimal peptide epitopes of 8–11 amino acids with appro-

priate binding motifs can associate with certain HLA class I

(HLA-I) alleles without further processing, thereby form-

ing ligands for CD8 T cells. Similarly, longer peptides of

13–18 amino acids can directly bind to HLA class II (HLA-

II) alleles and stimulate CD4 T cells. However, the sim-

plicity of administering peptide vaccines based on minimal

peptide epitopes must be balanced with the risk that most

injectedpeptideswill exogenouslybind to HLAexpressing

cells that do not express costimulatory molecules and do

not, therefore, efficiently stimulate T cells [27,28]. This is

principally a problem for HLA-I, which is expressed by

most nucleated cells of the body. The implications of this

may even lead to tolerance induction rather than activation

[29]. Synthetic long peptides are now routinely employed

in many clinical trials; they are generally more than

20 amino acids long, require processing and so favor pre-

sentation by professional antigen presenting cells such as

dendritic cells, ideally suited for T-cell priming. Judicious

choice of long peptide sequences can select regions encom-

passing both HLA-I and HLA-II binding epitopes; more-

over, binding motifs for multiple HLA alleles may be

present, which can be further increased by using multiple

long peptides in individual patients, as recently described

in the previously mentioned phase I trial for melanoma

[20��]. Nevertheless, generation of HLA-I binding pep-

tides requires processing of peptides that enter the cytosol,

which may not occur efficiently for all peptides. Future

trials may employ long peptides modified by the addition of

a cell penetrating peptide sequence, shown to induce

superior CD8 T-cell responses to long peptides alone in

animal models [30,31]. Interestingly, although this

approach promoted CD8 T-cell induction, this was not

at the expense of CD4 T-cell immune responses, which are

increasingly recognized as being an essential component of
Current Opinion in Pharmacology 2019, 47:20–26
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anti-cancer immunity [32�,33]. Indeed, CD4 T cells, par-

ticularly Th1 cells, are not only important for efficient CD8

T-cell priming, recruitment at the tumor site and establish-

ing memory, but they may also exert CD8-independent

anti-tumor effect functions, justifying CD4-inducing

approaches in peptide vaccination [22�,34,35].

Epitope prediction
Approaches to select peptide vaccine epitopes differ

according to whether the epitope is a TSA derived from

a mutated gene, or a non-mutated TAA. For the latter, it

is essential to determine preferential expression of the

protein by the tumor, and ideally (as for TSA) presenta-

tion of the peptide on tumor cell HLA molecules. This is

most directly determined by elution of peptide bound to

HLA from tumor cells, with subsequent detection and

characterization by mass spectrometry [36–38]. For

mutated epitopes, the development of faster and cheaper

deep-sequencing techniques has revolutionized identifi-

cation of putative neoepitopes [39], even at the single-cell

level [40]. This can be followed by bioinformatics algo-

rithms to predict peptide–HLA binding [41], which can

be combined with peptide characterization [37,38,42].

Regardless of the sophistication of epitope prediction

from TAA or TSA, it is also essential to prove T-cell

recognition. Here, the original techniques of reverse

immunology that opened the era of tumor immunother-

apy have been brought up to date with 21st century

technology. Culture of fastidious T-cell clones from can-

cer patients is no longer a bottleneck, with TCR trans-

duction, or healthy donor T cells being used to validate

epitope recognition [43,44]. Furthermore, the relation-

ship between TCR sequences and epitope specificity is

becoming progressively unraveled [45], opening future

possibilities for combining in silico approaches with cel-

lular immunology to determine whether predicted epi-

topes should be targeted by vaccines [21].

HLA-E-binding peptides as potential universal
tumor epitopes
To date therapeutic cancer vaccines have mostly focused

on antigenic peptides presented by classical HLA-I

molecules. However, the existence of unconventional

CD8 T-cell responses restricted by the non-classical

HLA-I molecule HLA-E has recently emerged, offering

the opportunity to identify alternative peptide targets in

cancer patients [46�]. As for classical HLA-I, HLA-E is

broadly expressed and assembles with b2-microglobulin

to present intracellular-derived peptides at the cell sur-

face [47]. However, whereas classical HLA-I has thou-

sands of allotypes, HLA-E shows little polymorphism,

with only two alleles that differ outside the peptide-

binding groove [48]. Thus, while the highly polymorphic

classical HLA-I molecules imposes diverse peptide

repertoires among patents, HLA-E–peptide complexes

could provide universal antigenic targets. Furthermore,

while classical HLA-I alleles are frequently down
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modulated in cancer cells, promoting immune escape

from CD8 T cells [49�], HLA-E expression is retained in

numerous hematopoietic and solid malignancies, and for

certain of these, levels are correlated with prognosis and/

or immune infiltration [50]. Hence, HLA-E binding

peptides may represent attractive therapeutic targets,

especially when classical HLA-I expression is lost. How-

ever, an HLA-E-restricted anti-tumor T-cell response

remains unexplored.

The role of HLA-E is best characterized as an NK

receptor ligand; a restricted peptide-set derived from

the signal sequences of others HLA-I molecules is

presented and protects healthy cells from NK cytotox-

icity through interaction with the inhibitory CD94/

NKG2A receptor. Nonetheless, during cellular stress,

infection or malignant transformation, HLA-E can pres-

ent a more diverse repertoire of peptides recognized by

CD8 T cells and can contribute to immunity in various

infections (reviewed in Ref. [51]). Indeed, HLA-E-

restricted pathogen-specific CD8 T cells can display

polyclonality, polyfunctionality, and long-term persis-

tence, that is, features that would be appropriate for

anti-tumor immunity. In mice, in vivo studies convinc-

ingly demonstrated immune surveillance of tumors

with TAP [52,53�] or ERAPP [54] deficiencies by T

cells restricted by the functional homolog of HLA-E,

Qa-1 [49�]. Moreover, Qa-1 restricted CD8 T cells

could be induced by peptide vaccination [52,53�]. In

human in vitro studies using classical HLA-I negative

cells, HLA-E was shown to bind a set of self-derived

peptides related to heat shock responses [55,56] and

defective antigen-processing [57]. Collectively, these

data encourage future efforts to identify and address

immunogenicity of the HLA-E–peptidome naturally

presented in human tumors, and to test the feasibility

of therapeutic vaccination. Finally, while HLA-E bind-

ing-peptide may represent potent therapeutic targets

when expressed at the surface of malignant cells, their

self-origin mandates vigilance; any on-target autoim-

mune side effects must be assessed.

Adjuvants and vaccine formulation
The formulation of a peptide vaccine and the choice of

adjuvant are critical for vaccine efficacy, with no consen-

sus concerning what is optimal for therapeutic vaccination

in cancer. The primary role of the adjuvant in any vaccine

is to ensure sufficient costimulation by the antigen pre-

senting cells that prime T cells. There are additional

requirements for a therapeutic peptide vaccine: facilitat-

ing cross-presentation of the vaccine peptides to stimu-

late CD8 T cells, protecting the peptides from too rapid

degradation, and promoting effector T-cell homing to the

tumor site. Current vaccines have mostly employed a

restricted range of adjuvants, including Montanide

ISA-51 (IFA), TLR agonists, and GM-CSF. Caution in

clinical trials has generally resulted in the use of single
www.sciencedirect.com
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adjuvants, but multiple adjuvants may ultimately be

necessary, as recently discussed [58,59]. Future develop-

ments will also need to consider modulating the duration

of antigen presentation [60], and minimizing the reten-

tion and inactivation of activated T cells in water-in-oil

depots (Montanide, IFA) at the injection site [61,62�].

Synergistic combination therapies
High magnitude, highly functional, tumor-specific T cells

induced by the most optimal peptide vaccine that can be

envisaged still face a final formidable hurdle: the tumor

microenvironment. Tumor cells, myeloid cells, regulatory

T cells, an aberrant vasculature and physicochemical

features of the tumor microenvironment such as hypoxia

and lactate accumulation, all contribute to inhibit T-cell

infiltration or function. Fortunately, the revolution in

clinical cancer immunotherapy offers a multitude of

opportunities for rational combinations with peptide vac-

cination, many of which are already under clinical trial

[3�]. These can use peptide vaccination to sensitize to the

immunomodulator (e.g. ICB), or use ICB antibodies to

maintain the functionality of vaccine-induced T cells.

Although the end result, clinical efficacy, might be the

same, the underlying mechanism will influence the

choice and sequence of administering the different ther-

apies. Combinations are not only restricted to immuno-

therapy, but can include radiotherapy, targeted therapy,

anti-angiogenic therapy and chemotherapy. Certain che-

motherapeutic agents, when used in the right sequence,

can promote anti-tumor immunity by eliciting immuno-

genic tumor cell death [63], and anti-angiogenic strategies

can enhance T-cell infiltration [64].

Perspectives
The future for therapeutic peptide vaccines is encourag-

ing, because we have tools to identify target antigens,

adjuvants to potentially combine for enhanced
www.sciencedirect.com 
immunogenicity and a multitude of clinically relevant

immunomodulators (Figure 1). A major challenge of this

cornucopia of opportunities is how to rationally combine

and test a multimodal cancer therapy in a clinical context.

Tumor immunity requires investigation in vivo, which

obligates uses of immunocompetent animals in preclini-

cal testing, and yet the targeted antigens will be of human

origin in the clinical vaccine. Despite advances in using

humanized animals and more sophisticated in vitro cul-

tures, these must be used in addition to biological and

clinical information, with improved immunomonitoring

from clinical trials. We should be inspired by the cancer

immunotherapy revolution of ICB that was built on

deciphering conserved immune mechanisms between

mice and humans, to develop a next generation of potent

peptide vaccines to incorporate into new multimodality

treatments for cancer patients.
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